4.5 Article

Joint semiparametric models for case-cohort designs

期刊

BIOMETRICS
卷 79, 期 3, 页码 1959-1971

出版社

WILEY
DOI: 10.1111/biom.13728

关键词

density ratio model; nonparametric likelihood; semiparametric transformation model

向作者/读者索取更多资源

This paper proposes a joint semiparametric modeling approach for efficient regression analysis of two-phase study data. The approach combines semiparametric models for the survival outcome and the expensive exposures, and exhibits good performance and robustness.
Two-phase studies such as case-cohort and nested case-control studies are widely used cost-effective sampling strategies. In the first phase, the observed failure/censoring time and inexpensive exposures are collected. In the second phase, a subgroup of subjects is selected for measurements of expensive exposures based on the information from the first phase. One challenging issue is how to utilize all the available information to conduct efficient regression analyses of the two-phase study data. This paper proposes a joint semiparametric modeling of the survival outcome and the expensive exposures. Specifically, we assume a class of semiparametric transformation models and a semiparametric density ratio model for the survival outcome and the expensive exposures, respectively. The class of semiparametric transformation models includes the proportional hazards model and the proportional odds model as special cases. The density ratio model is flexible in modeling multivariate mixed-type data. We develop efficient likelihood-based estimation and inference procedures and establish the large sample properties of the nonparametric maximum likelihood estimators. Extensive numerical studies reveal that the proposed methods perform well under practical settings. The proposed methods also appear to be reasonably robust under various model mis-specifications. An application to the National Wilms Tumor Study is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据