4.7 Article

Identifying cellular cancer mechanisms through pathway-driven data integration

期刊

BIOINFORMATICS
卷 38, 期 18, 页码 4344-4351

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btac493

关键词

-

资金

  1. European Research Council (ERC) [770827]
  2. Spanish State Research Agency AEI [PID2019-105500GB-I00]
  3. European Research Council (ERC) [770827] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

This study proposes a method to identify cancer pathways based on changes in pathway-pathway relationships. By learning the embedding space of relationships between pathways in a healthy cell, the study predicts genes and pathways involved in cancer, and identifies druggable targets.
Motivation: Cancer is a genetic disease in which accumulated mutations of driver genes induce a functional reorganization of the cell by reprogramming cellular pathways. Current approaches identify cancer pathways as those most internally perturbed by gene expression changes. However, driver genes characteristically perform hub roles between pathways. Therefore, we hypothesize that cancer pathways should be identified by changes in their pathway-pathway relationships. Results: To learn an embedding space that captures the relationships between pathways in a healthy cell, we propose pathway-driven non-negative matrix tri-factorization. In this space, we determine condition-specific (i.e. diseased and healthy) embeddings of pathways and genes. Based on these embeddings, we define our 'NMTF centrality' to measure a pathway's or gene's functional importance, and our 'moving distance', to measure the change in its functional relationships. We combine both measures to predict 15 genes and pathways involved in four major cancers, predicting 60 gene-cancer associations in total, covering 28 unique genes. To further exploit driver genes' tendency to perform hub roles, we model our network data using graphlet adjacency, which considers nodes adjacent if their interaction patterns form specific shapes (e.g. paths or triangles). We find that the predicted genes rewire pathway-pathway interactions in the immune system and provide literary evidence that many are druggable (15/28) and implicated in the associated cancers (47/60). We predict six druggable cancer-specific drug targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据