4.6 Article

Galaxies in the central regions of simulated galaxy clusters

期刊

ASTRONOMY & ASTROPHYSICS
卷 665, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202243651

关键词

methods: numerical; galaxies: abundances; galaxies: clusters: general; galaxies: formation; Galaxy: evolution; galaxies: structure

资金

  1. PRIN-MIUR 2017 [WSCC32]
  2. MIUR-DAAD [34843]
  3. Alexander von Humboldt Stiftung
  4. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [390783311]
  5. European Research Council (ERC) [ERC-2019-AdG 882679]
  6. Computational centre for Particle and Astrophysics (C2PAP)
  7. Gordon and Betty Moore Foundation
  8. John Tempsborganion Foundation
  9. ASI [2018-23-HH.0]
  10. Carl Friedrich von Siemens Stiftung

向作者/读者索取更多资源

Recent observations have found that observed cluster member galaxies are more compact than their counterparts in simulations. Some studies suggest that better resolution and different galaxy formation schemes in simulations could produce better agreement with observations.
Context. Recent observations found that observed cluster member galaxies are more compact than their counterparts in ACDM hydrodynamic simulations, as indicated by the difference in their strong gravitational lensing properties, and they reported that measured and simulated galaxy-galaxy strong lensing events on small scales are discrepant by one order of magnitude. Among the possible explanations for this discrepancy, some studies suggest that simulations with better resolution and implementing different schemes for galaxy formation could produce simulations that are in better agreement with the observations. Aims. In this work, we aim to assess the impact of numerical resolution and of the implementation of energy input from AGN feedback models on the inner structure of cluster sub-haloes in hydrodynamic simulations. Methods. We compared several zoom-in re-simulations of a sub-sample of cluster-sized haloes obtained by varying mass resolution and softening the length and AGN energy feedback scheme. We studied the impact of these different setups on the sub-halo (SH) abundances, their radial distribution, their density and mass profiles, and the relation between the maximum circular velocity, which is a proxy for SH compactness Results. Regardless of the adopted numerical resolution and feedback model, SHs with masses of M-SH less than or similar to 10(11) h(-1) M-circle dot, the most relevant mass range for galaxy-galaxy strong lensing, have maximum circular velocities similar to 30% smaller than those measured from strong lensing observations. We also find that simulations with less effective AGN energy feedback produce massive SHs (M-SH greater than or similar to 10(11) h(-1) M-circle dot) with higher maximum circular velocity and that their V-max-M-SH relation approaches the observed one. However, the stellar-mass number count of these objects exceeds the one found in observations, and we find that the compactness of these simulated SHs is the result of an extremely over-efficient star formation in their cores, also leading to larger than observed SH stellar mass. Conclusions. Regardless of the resolution and galaxy formation model adopted, simulations are unable to simultaneously reproduce the observed stellar masses and compactness (or maximum circular velocities) of cluster galaxies. Thus, the discrepancy between theory and observations that emerged previous works. It remains an open question as to whether such a discrepancy reflects limitations of the current implementation of galaxy formation models or the ACDM paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据