4.6 Article

The Stability of Fiber Spectrographs in the Faint-source Regime

期刊

ASTRONOMICAL JOURNAL
卷 164, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-3881/ac76cc

关键词

-

资金

  1. University of California Observatories Mini-Grant
  2. Alfred P. Sloan Foundation
  3. U.S. Department of Energy Office of Science
  4. Center for High-Performance Computing at the University of Utah
  5. Brazilian Participation Group
  6. Carnegie Institution for Science
  7. Carnegie Mellon University
  8. Chilean Participation Group
  9. French Participation Group
  10. Harvard-Smithsonian Center for Astrophysics
  11. Instituto de Astrofisica de Canarias
  12. Johns Hopkins University
  13. Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo
  14. Lawrence Berkeley National Laboratory
  15. Leibniz Institut fur Astrophysik Potsdam (AIP)
  16. Max-Planck-Institut fur Astronomie (MPIA Heidelberg)
  17. Max-Planck-Institut fur Astrophysik (MPA Garching)
  18. Max-Planck-Institut fur Extraterrestrische Physik (MPE)
  19. National Astronomical Observatories of China
  20. New Mexico State University
  21. New York University
  22. University of Notre Dame
  23. Observatorio Nacional/MCTI
  24. Ohio State University
  25. Pennsylvania State University
  26. Shanghai Astronomical Observatory
  27. United Kingdom Participation Group
  28. Universidad Nacional Autonoma de Mexico
  29. University of Arizona
  30. University of Colorado Boulder
  31. University of Oxford
  32. University of Portsmouth
  33. University of Utah
  34. University of Virginia
  35. University of Washington
  36. University of Wisconsin
  37. Vanderbilt University
  38. Yale University

向作者/读者索取更多资源

This paper evaluates the performance of optical fibers in astronomical instrumentation, especially for observing faint targets on large telescopes. By studying fiber systematics and precision sky subtraction, it demonstrates the possibility of achieving 0.1% precision sky subtraction with fiber instruments.
The use of optical fibers in astronomical instrumentation offers high-multiplex and light-gathering flexibility. However, with most previous fiber spectrographs optimized for large fields of view on modest-aperture telescopes, the performance of fibers in the context of faint targets on large telescopes remains largely untested. In this paper, we evaluate aspects of fiber stability, especially as they apply in the context of precision sky subtraction of faint sources at modest spectral resolution (R similar to 3000). After introducing a framework for describing potential systematic errors, we use publicly available data from existing instruments, including instrumentation used by the fourth-generation Sloan Digital Sky Survey's MaNGA project (MaNGA: Mapping Nearby Galaxies at Apache Point Observatory) and the Very Large Telescope's FLAMES: Fiber Large Array Multi Element Spectrograph. We isolate sources of fiber systematics and estimate the observed amplitude of persistent residuals as well as stochastic noise contributions resulting from changing fiber stresses. Comparing these levels against their impact on various sky subtraction schemes demonstrates that 0.1% precision sky subtraction with fiber instruments is possible. As a demonstration, we show that the MaNGA instrument can deliver 0.2% residuals on bright near-IR sky lines with nonlocal sky subtraction, if pseudo-slit limitations are addressed by allocating 50% of its fibers to sky. We further highlight recently published deep exposures that achieved a 1 sigma background level of 27.6 AB per square arc second, equivalent to a precision of 0.2% of the sky background continuum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据