4.7 Article

Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption

期刊

APPLIED SURFACE SCIENCE
卷 592, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.153324

关键词

Hierarchical nanocomposites; Absorbing material; Attenuation mechanism; One-dimensional; Heterostructure

资金

  1. National Natural Sci-ence Foundation of China [52072196, 52002199, 52002200, 52102106]
  2. Major Basic Research Program of Natural Science Foundation of Shandong Province [ZR2020ZD09]
  3. Natural Science Foundation of Shandong Province [ZR2019BEM042, ZR2020QE063]
  4. Innovation and Technology Pro-gram of Shandong Province [2020KJA004]
  5. Taishan Scholars Program of Shandong Province [ts201511034]

向作者/读者索取更多资源

In this study, SiCNWS@Ni-Co2O4@PANI one-dimensional (1D) hierarchical nanocomposites were successfully prepared, and they exhibited excellent electromagnetic wave absorption properties through their hierarchical microstructure, diverse components, and heterogeneous interface.
Developing a novel electromagnetic wave absorbing material with excellent absorption properties is an optimal solution to deal with increasingly serious electromagnetic radiation and pollution. Herein, the SiCNWS@Ni-Co2O4@PANI one dimensional (1D) hierarchical nanocomposites were successfully prepared through modifying NiCo2O4 nanosheets and PANI coatings on the surface of the as-prepared SiC nanowires. Under the synergistic contribution of the peculiar hierarchical microstructure, diverse components and heterogeneous interface, the dipole polarization and polarization relaxation of the SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites were enhanced greatly, which aroused stronger attenuation capacity and better impedance matching, and further obtained high-efficiency electromagnetic wave absorption properties. The minimum reflection loss value of-53.74 dB was achieved at a matching thickness of 1.96 mm, meanwhile, the widest effective absorption band of 4.16 GHz was measured at an ultra-thin matching thickness of 1.18 mm, suggesting that the nanocomposites could be an attractive candidate electromagnetic wave absorbing material. According to systematic character-ization, a reasonable electromagnetic wave loss mechanism was proposed to elucidate the attenuation modes of the incident electromagnetic wave.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据