4.7 Article

Stable cycling of high nickel Li-metal batteries with limited Li anode in fluorine rich flame retardant electrolytes

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries

Shihan Qi et al.

Summary: This study proposes a multi-factor principle for electrolyte additive molecular design to inhibit the growth of Li dendrites in lithium metal batteries. Experimental results demonstrate the excellent performance of the proposed electrolyte additives.

SCIENCE BULLETIN (2021)

Review Chemistry, Multidisciplinary

Non-Flammable Liquid and Quasi-Solid Electrolytes toward Highly-Safe Alkali Metal-Based Batteries

Pauline Jaumaux et al.

Summary: Traditional liquid electrolytes in alkali metal-based batteries pose safety risks, thus exploring non-flammable electrolytes is crucial. While all-solid-state electrolytes may be the ultimate solution, non-flammable liquid electrolytes can more directly meet current needs. Gelation techniques can further address electrolyte leakage concerns.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries

Fang Li et al.

Summary: This study focuses on the impact of bisfluoroacetamide (BFA) as an electrolyte additive on the solid electrolyte interphase (SEI) structure. By constructing a gradient SEI structure, it achieves better Li ion capture and transportation effects.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries

Junru Wu et al.

Summary: This study reports a new type of gel polymer electrolyte combined with a hybrid cathode of Li-rich oxide active material and graphite to produce a high-energy Li metal battery, where additional capacity is generated through the anion shuttling mechanism of the electrolyte. The gel polymer electrolyte exhibits adequate ionic conductivity and oxidation stability, and is compatible and safe with Li metal.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Optimizing Electrode/Electrolyte Interphases and Li-Ion Flux/Solvation for Lithium-Metal Batteries with Qua-Functional Heptafluorobutyric Anhydride

Junda Huang et al.

Summary: The study introduced a quaternary-functional additive HFA that can optimize the solid electrolyte interphase in rechargeable lithium-metal batteries. Using HFA can achieve stable lithium plating, suppress metal ion dissolution, and enhance the wettability of the separator by the electrolyte, thereby increasing lithium ion flux.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Nonflammable functional electrolytes with all-fluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode

Tianxiang Yang et al.

Summary: A nonflammable functional electrolyte containing fluoroethylene carbonate (FEC) and ethyl difluoroacetate (EFA) solvents was developed for rechargeable Li-metal batteries (LMBs) with LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode (NCM811), showing enhanced cycling retention and coulombic efficiency compared to fluorocarbonate-based and carbonate-based electrolytes. The FEC/EFA-based electrolyte facilitates the formation of a durable and highly fluorinated interfacial layer, promoting uniform Li deposition with less dendrites and polarization in the Li-metal anode.

JOURNAL OF POWER SOURCES (2021)

Review Chemistry, Physical

Review-recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries

Lan Xia et al.

Summary: This review summarizes the latest research progress of fluorinated compounds used in high energy density lithium-ion batteries, with a focus on high-voltage functional fluorinated compounds. Researchers believe that this review will help develop the next generation of high energy density electrolyte systems.

ENERGY STORAGE MATERIALS (2021)

Review Energy & Fuels

Recent advances in anion-derived SEIs for fast- charging and stable lithium batteries

Ye Xiao et al.

Summary: The use of anion-derived solid electrolyte interphases (SEI) and novel electrolyte chemistry is crucial for building fast-charging and stable lithium batteries. Future challenges include designing lithium metal interfaces to enhance cycling reversibility and lifespan of working batteries.

ENERGY MATERIALS (2021)

Review Nanoscience & Nanotechnology

Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives

Qian-Kui Zhang et al.

Summary: The article discusses the thermal runaway mechanisms of lithium metal batteries, measurement methods for thermal stability and nonflammability of liquid electrolytes, as well as recent progress in nonflammable electrolytes for lithium metal batteries. Future perspectives on designing thermally stable and nonflammable electrolytes for lithium metal batteries are also presented.

SMALL SCIENCE (2021)

Review Chemistry, Multidisciplinary

High-voltage liquid electrolytes for Li batteries: progress and perspectives

Xiulin Fan et al.

Summary: The energy density of LIBs has been increased threefold since their introduction, but the capacity of transition metal oxide cathodes is approaching its limit due to stability limitations of electrolytes. To further enhance energy density, new high-capacity and high-voltage cathode materials need to be explored, and graphite anodes may need to be replaced. One of the main challenges for future development is the development of new electrolyte compositions that can accommodate high-voltage cathodes and anodes while ensuring the stability of the batteries.

CHEMICAL SOCIETY REVIEWS (2021)

Article Multidisciplinary Sciences

Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation

Hongliu Dai et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries

Dong-Joo Yoo et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Electrochemistry

Synergistic Effect of Fluorinated Solvents for Improving High Voltage Performance of LiNi0.5Mn1.5O4Cathode

Hai Lu et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

FSI-inspired solvent and full fluorosulfonyl electrolyte for 4 V class lithium-metal batteries

Weijiang Xue et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Physical

High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries

Xiaodi Ren et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Physical

Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium- metal batteries

Hongyun Yue et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Electrochemistry

High-Voltage LiNi0.5Mn1.5O4 Cathode Stability of Fluorinated Ether Based on Enhanced Separator Wettability

Hao Zheng et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2019)

Article Chemistry, Physical

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries

Brian D. Adams et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes

Shuru Chen et al.

ADVANCED MATERIALS (2018)

Article Nanoscience & Nanotechnology

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries

Xiulin Fan et al.

NATURE NANOTECHNOLOGY (2018)

Article Multidisciplinary Sciences

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries

Liumin Suo et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Review Nanoscience & Nanotechnology

Reviving the lithium metal anode for high-energy batteries

Dingchang Lin et al.

NATURE NANOTECHNOLOGY (2017)

Review Chemistry, Multidisciplinary

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review

Xin-Bing Cheng et al.

CHEMICAL REVIEWS (2017)

Review Chemistry, Multidisciplinary

High-voltage positive electrode materials for lithium-ion batteries

Wangda Li et al.

CHEMICAL SOCIETY REVIEWS (2017)

Article Chemistry, Physical

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives

Arumugam Manthiram et al.

ADVANCED ENERGY MATERIALS (2016)

Article Electrochemistry

Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries

Jing Li et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2015)

Article Multidisciplinary Sciences

High rate and stable cycling of lithium metal anode

Jiangfeng Qian et al.

NATURE COMMUNICATIONS (2015)

Article Chemistry, Physical

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

Dongping Lu et al.

ADVANCED ENERGY MATERIALS (2015)

Review Chemistry, Multidisciplinary

Lithium metal anodes for rechargeable batteries

Wu Xu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Article Chemistry, Multidisciplinary

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries

Yuki Yamada et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Physical

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

Yingying Lu et al.

NATURE MATERIALS (2014)

Article Chemistry, Multidisciplinary

Fluorinated electrolytes for 5 V lithium-ion battery chemistry

Zhengcheng Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2013)

Article Electrochemistry

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode

Fei Ding et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2013)

Article Multidisciplinary Sciences

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

Liumin Suo et al.

NATURE COMMUNICATIONS (2013)

Article Chemistry, Physical

Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

Ganesan Nagasubramanian et al.

JOURNAL OF POWER SOURCES (2011)

Review Chemistry, Multidisciplinary

Nonaqueous liquid electrolytes for lithium-based rechargeable batteries

K Xu

CHEMICAL REVIEWS (2004)