4.8 Article

Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 310, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121326

关键词

Z-scheme heterojunctions; DFT theoretical; Fe-N-4 sites; Spin state; Degradation

资金

  1. Natural Science Foundation of China [51908213, 52160001, 51908214, 61872141]
  2. Program of Major Disciplines, Academic and Technical Leaders of Jiangxi Province [20204BCJL23038]
  3. Natural Science Foundation of Jiangxi Province [20212ACB204003, 20201BBE51020]
  4. State Key Laboratory of Pollution Control and Resource Reuse Foundation [PCRRF21028]

向作者/读者索取更多资源

In this study, a Fe-g-C3N4/Bi2WO6 Z-scheme heterojunction was elaborately designed for the degradation of tetracycline (TC). The performance of H2O2 decomposition in the Z-scheme heterojunction was improved by the doping of iron, enhancing the transportability of photogenerated electrons and facilitating the spread of radicals. The study also found that O-1(2) and center dot O-2- were the main active species participating in the degradation process, according to efficacy analyses and experimental results.
Herein, Fe-g-C3N4/Bi2WO6 Z-scheme heterojunction is elaborately designed to build a photo-Fenton system for the degradation of tetracycline (TC). In this study, the H2O2 decomposition performance of the Z-scheme heterojunction has been improved due to the doping of iron, improve photogenerated electrons transportability and facilitate spread of radicals, according to the efficacy analyses, and trapping experiment, ESR analysis as well as degradation pathways of TC. Moreover, DFT theoretical results suggest that the Z-scheme transfer route coupled with the generated photo-Fenton process builds a Z-scheme-charge-transfer platform for remarkable degradation of emerging pollutants, and the formation of Fe-N4 sites induces a spin polarization of the material and also introduces a defect state in the original forbidden band, which leads to extremely activity for the removal of TC in the photo-Fenton system. The study shows that O-1(2) and center dot O-2- are the main active species participating in the degradation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据