4.7 Article

Candida parapsilosis Mdr1B and Cdr1B Are Drivers of Mrr1-Mediated Clinical Fluconazole Resistance

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aac.00289-22

关键词

Candida parapsilosis; fluconazole; resistance; MRR1

资金

  1. NIH NIAID [R01 A1058145, R01 AI131620]

向作者/读者索取更多资源

Candida parapsilosis is a common cause of invasive candidiasis worldwide, particularly in pediatric and neonatal populations. A study found that nonsynonymous mutations in the CpMRR1 gene are important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, primarily driven by upregulation of MFS and ABC transporters.
Candida parapsilosis is a common cause of invasive candidiasis worldwide and is the most commonly is7olated Candida species among pediatric and neonatal populations. Previous work has demonstrated that nonsynonymous mutations in the gene encoding the putative transcription factor CpMrr1 can influence fluconazole susceptibility. However, the direct contribution of these mutations and how they influence fluconazole resistance in clinical isolates are poorly understood. We identified 7 nonsynonymous CpMRR1 mutations in 12 isolates from within a collection of 35 fluconazole-resistant clinical isolates. The mutations leading to the A854V, R479K, and I283R substitutions were further examined and found to be activating mutations leading to increased fluconazole resistance. In addition to CpMDR1, we identified two other genes, one encoding a major facilitator superfamily (MFS) transporter (CpMDR1B, CPAR2_603010) and one encoding an ATP-binding cassette (ABC) transporter (CpCDR1B, CPAR2_304370), as being upregulated in isolates carrying CpMRR1-activating mutations. Overexpression of CpMDR1 in a susceptible strain and disruption in resistant clinical isolates that overexpress CpMDR1 had little to no effect on fluconazole susceptibility. Conversely, overexpression of either CpMDR1B or CpCDR1B increased resistance, and disruption in clinical isolates overexpressing these genes decreased fluconazole resistance. Our findings suggest that activating mutations in CpMRR1 represent important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, and unlike what is observed in Candida albicans, this is primarily driven by upregulation of both MFS (CpMdr1B) and ABC (CpCdr1B) transporters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据