4.4 Article

Prediction of fitness under different breeding designs in conservation programs

期刊

ANIMAL CONSERVATION
卷 26, 期 1, 页码 86-102

出版社

WILEY
DOI: 10.1111/acv.12804

关键词

inbreeding depression; inbreeding load; fitness; deleterious mutations; genetic purging; genetic management; conservation programs

向作者/读者索取更多资源

The study found that the change in fitness due to deleterious recessive alleles in inbreeding can be predicted by estimating the inbreeding load and purging coefficient. These parameters can be estimated in pedigreed populations and accurately predict the change in fitness under different breeding systems. The fitness predictions can help inform conservation designs under different breeding scenarios.
The expected change in fitness under inbreeding due to deleterious recessive alleles depends on the amount of inbreeding load harbored by a population, that is, the load of deleterious recessive mutations concealed in the heterozygous state, and the opposing effect of genetic purging to remove such a load. This change in fitness can be thus predicted if an estimate of the inbreeding load and the purging coefficient (the parameter that quantifies the amount of purging) are available. These two parameters can be estimated in pedigreed populations, as has been shown for populations under random mating. A question arises whether these parameters can also be estimated under other breeding systems as well as whether they allow accurate prediction of the corresponding expected change in fitness. In conservation programs, it is usually recommended to preserve genetic diversity by equalizing contributions from parents to progeny and avoiding inbred matings. Regular systems of inbreeding have also been proposed as breeding conservation strategies to purge the inbreeding load. Using computer simulations, we first test a method to jointly estimate the initial inbreeding load and the purging coefficient in populations subjected to equalization of parental contributions, circular mating, and partial full-sib mating. Then, using the expected values of the inbreeding coefficient and the variance of family size, as well as the estimates of the inbreeding load and the purging coefficient, we make simple predictions of the change in fitness over generations under these breeding systems and compare them with simulation results. We discuss how these fitness predictions can help undertaking conservation designs under different breeding scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据