4.8 Article

Super-Coordinated Nickel N4Ni1O2 Site Single-Atom Catalyst for Selective H2O2 Electrosynthesis at High Current Densities

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination

Feifei Zhang et al.

Summary: A new type of W SAC with unique local structure was designed and prepared, showing excellent performance in electrochemical ORR, particularly in terms of H2O2 selectivity and operational durability. The findings open up new opportunities for developing high-performance W-based catalysts for electrochemical H2O2 production.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production

Haisheng Gong et al.

Summary: By simultaneously regulating the coordination number of atomically dispersed cobalt sites and nearby oxygen functional groups through a one-step microwave thermal shock, a highly selective and active Co-N-C electrocatalyst for H2O2 electrosynthesis has been obtained. This catalyst exhibits high H2O2 selectivity, outstanding mass activity, and large kinetic current density, showing great potential for the development of new electrocatalysts with unprecedented reactivity.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Cation-Vacancy-Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides

Zheng Zhou et al.

Summary: Electrocatalytic hydrogen peroxide synthesis via two-electron oxygen reduction reaction pathway is becoming increasingly important due to its green production process. Introducing cationic vacancies on nickel phosphide as a proof-of-concept to regulate the catalyst's properties has led to efficient H2O2 electrosynthesis. The created Ni cationic vacancies enriched Ni2-xP-V-Ni electrocatalyst exhibits remarkable 2e ORR performance and long-term durability, with optimized geometric and electronic structures. Cation vacancy engineering is believed to be an effective strategy for creating active heterogeneous catalysts with atomic precision.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide

Erhuan Zhang et al.

Summary: Rarely reported is the in-depth understanding of local atomic environment-property relationships of p-block metal single-atom catalysts towards the 2e(-) oxygen reduction reaction (ORR). In this study, a heteroatom-modified In-based metal-organic framework-assisted approach is developed to synthesize an optimal catalyst, In SAs/NSBC, with accurately anchored single In atoms supported by hollow carbon rods. The catalyst exhibits a high H2O2 selectivity and unprecedented production rates in different electrolytes, providing practical guidance for H2O2 electrosynthesis and enabling the design of high-performance single-atom materials.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2

Xueying Cao et al.

Summary: By utilizing the electrospun-pyrolysis cooperative strategy to modulate the porous structure of the carbon support and adjust the bridging structure of atomically dispersed metal species, the unique chemical structure of binuclear nickel bridging with nitrogen and carbon atoms has been identified to enhance CO2 reduction substantially.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction

Yaling Jia et al.

Summary: Accurately regulating the selectivity of the oxygen reduction reaction (ORR) by tailoring the coordination environment of atomically dispersed Zn sites can achieve high selectivity, with ZnO3C catalyst processing a 2 e(-) ORR pathway for H2O2 generation in 0.1 M KOH. This is attributed to the decreased electron density around Zn in ZnO3C which changes the intermediate adsorption and contributes to the high selectivity towards 2 e(-) ORR.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Molecule Confined Isolated Metal Sites Enable the Electrocatalytic Synthesis of Hydrogen Peroxide

Xiaogang Li et al.

Summary: The study shows that confining isolated metal sites on carbon supports can increase the selectivity of aminoanthraquinone as a catalyst in catalyzing the oxygen reduction reaction to produce H2O2. By reducing the thermodynamic barrier for OOH* desorption, the selectivity for H2O2 is improved.

ADVANCED MATERIALS (2022)

Review Chemistry, Multidisciplinary

Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts

Shenlong Zhao et al.

Summary: Studying the structure-activity correlations of electrocatalysts is crucial for improving the conversion of electrical to chemical energy. Recent evidence obtained through operando characterization techniques shows that the structural evolution of catalysts, caused by their interaction with electric fields, electrolytes, and reactants/intermediates, leads to the formation of real active sites. It is therefore important to summarize the research advances in structural evolution and envision future developments. In this Minireview, the fundamental concepts associated with structural evolution, the triggers of this evolution, and advanced operando characterizations are discussed. The reversibility of structural evolution in heterogeneous electrocatalysis, with a focus on the oxygen evolution and CO2 reduction reactions, is also highlighted. Finally, the key challenges and opportunities in this exciting field are presented.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Physical

Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis

Kuang-Hsu Wu et al.

Summary: Modulating the steric-electronic configuration of metal-organic centers is key for tuning the activity and selectivity of heterogeneous reactions. In this study, three different asymmetric metal-organic complexes with unique steric-electronic structures are immobilized on nanocarbon for an electron-transfer-controlled oxygen reduction reaction. The results show that acidic diamine ligands facilitate a four-electron transfer, while basic ligands drive a highly selective two-electron route, regulated by the ligand's proton transfer ability.

CHEM CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Selective Electrocatalytic Reduction of Oxygen to Hydroxyl Radicals via 3-Electron Pathway with FeCo Alloy Encapsulated Carbon Aerogel for Fast and Complete Removing Pollutants

Fan Xiao et al.

Summary: A new strategy of generating hydroxyl radicals from electrocatalytic reduction of oxygen has been reported, showing fast and complete removal of ciprofloxacin with high degradation rate and stability. This approach involves tuning the electronic environment to regulate electrocatalytic activity, achieving results comparable to state-of-the-art advanced oxidation processes.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4

Lei Zhang et al.

Summary: Cu(I)-based catalysts are essential for the electrocatalytic CO2 reduction, and in this study, two stable copper(I)-based catalysts with inherent cuprophilic interactions were synthesized for highly selective CO2-to-CH4 conversion. The substitution of sulfate radicals with hydroxyl radicals led to a dynamic crystal structure transition, enhancing the cuprophilic interactions inside the catalyst structure. The enhanced cuprophilic interactions in NNU-33(H) showed outstanding CH4 selectivity, representing the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Durable and Selective Electrochemical H2O2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture

Peike Cao et al.

Summary: A highly hydrophobic gas-liquid-solid three-phase architecture has been proposed to improve the electrochemical synthesis of H2O2, achieving high efficiency and high concentration of H2O2 production.

ACS CATALYSIS (2021)

Article Chemistry, Multidisciplinary

Chemical Identification of Catalytically Active Sites on Oxygen-doped Carbon Nanosheet to Decipher the High Activity for Electro-synthesis Hydrogen Peroxide

Shanyong Chen et al.

Summary: A chemical titration strategy was proposed to decipher the mechanism of oxygen-doped carbon nanosheet catalyst for 2 e(-) ORR, revealing that C=O species are the main active sites for electrocatalytic activity.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres

Cheng Tang et al.

Summary: This study demonstrates that the molecular-level local structure, including first and second coordination spheres, plays a critical role in determining the selectivity of catalytic reactions. By modifying the first and second coordination spheres of Co-SACs, it is possible to tailor the oxygen reduction reaction selectivity. The unique selectivity change originates from the structure-dependent shift of active sites, leading to improved activity and selectivity for acidic H2O2 electrosynthesis.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

Carbon Free and Noble Metal Free Ni2Mo6S8 Electrocatalyst for Selective Electrosynthesis of H2O2

Fan Xia et al.

Summary: The Chevrel phase chalcogenide Ni2Mo6S8 is a novel active motif for reducing oxygen to H2O2, exhibiting exceptional activity with high selectivity, fast turnover frequencies, and stable crystal structure for continuous H2O2 production.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Facet-Selective Deposition of Ultrathin Al2O3 on Copper Nanocrystals for Highly Stable CO2 Electroreduction to Ethylene

Hui Li et al.

Summary: Catalysts based on Cu nanocrystals with ultrathin Al2O3 overcoating show significantly improved selectivity and stability in electrochemical CO2-to-C2+ conversion, with a C2H4 faradaic efficiency as high as 60.4% at a current density of 300 mA cm(-2). The Al2O3 overcoating effectively suppresses the dynamic mobility and aggregation of Cu nanocrystals, leading to negligible activity loss during stability tests.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries

Yongguang Zhang et al.

Summary: In this study, a novel single atom catalyst and unique carbon support were synthesized to improve the performance of lithium-sulfur batteries, mitigate the shuttle effect of polysulfides, and enhance the kinetics of redox reactions, resulting in outstanding battery performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Boosting CO2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure

Yahui Wu et al.

Summary: Guided by first-principles calculations, it was discovered that Cd single-atom catalysts have excellent performance in activating CO2, and the introduction of axial coordination structure can further decrease the free energy barrier of CO2 reduction while suppressing the hydrogen evolution reaction. The designed and synthesized novel Cd SAC showed outstanding performance in CO2 electroreduction to CO, achieving a high faradaic efficiency and turnover frequency. This work serves as a successful example of designing highly efficient catalysts guided by theoretical calculations.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates

Yang Xia et al.

Summary: Oxygen reduction reaction provides an environmentally-benign route for hydrogen peroxide production but lacks efficient catalysts to achieve high selectivity and activity simultaneously. Here, the authors report a boron-doped carbon catalyst which shows great promise with outstanding performance.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater

Qinglan Zhao et al.

Summary: The study demonstrates the efficient production of H2O2 using cobalt single-atom catalysts in simulated seawater, showing long-term stability and high chloride-endurability. It reveals that the Co-N-5 structure is the main active site for H2O2 formation, offering a promising pathway for large-scale electrocatalytic oxygen reduction in simulated seawater towards energy sustainability.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range

Zhiqiang Chen et al.

Summary: Through a fast-pyrolyzing and controllable-activation strategy, an O-rich carbonaceous support and atomically dispersed FeN4 site with axial O coordination were constructed, achieving a wide potential range and high FECO. DFT calculations revealed that the superior performance originated from the axial O-coordination induced electronic localization enhancement, facilitating CO desorption and increasing the energy barrier for competitive hydrogen evolution reaction.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability

Xue Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Multidisciplinary Sciences

Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2

Gao-Feng Han et al.

NATURE COMMUNICATIONS (2020)

Article Multidisciplinary Sciences

Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production

Qingran Zhang et al.

NATURE COMMUNICATIONS (2020)

Review Materials Science, Multidisciplinary

Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts

Jiajian Gao et al.

ACS MATERIALS LETTERS (2020)

Article Chemistry, Multidisciplinary

A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction

Huinian Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts

Yanyan Sun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Multidisciplinary Sciences

Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination

Kun Jiang et al.

NATURE COMMUNICATIONS (2019)