4.8 Article

Highly Efficient and Direct Ultralong All-Phosphorescence from Metal-Organic Framework Photonic Glasses

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202208735

关键词

Active Waveguide; MOF Glasses; Persistent Luminescence; Quantum Yield; Room-Temperature Phosphorescence

资金

  1. Beijing Municipal Natural Science Foundation [JQ20003]
  2. National Natural Science Foundation of China [21771021, 21822501, 22061130206]
  3. Newton Advanced Fellowship award [NAF\R1\201285]
  4. Fok Ying-Tong Education Foundation [171008]
  5. Measurements Fund of Beijing Normal University
  6. State Key Laboratory of Heavy Oil Processing

向作者/读者索取更多资源

Efficient and ultralong room-temperature phosphorescence (RTP) has been achieved in transparent metal-organic framework (MOF) bulk glasses, with high photoluminescence quantum yield (PLQY).
Realizing efficient and ultralong room-temperature phosphorescence (RTP) is highly desirable but remains a challenge due to the inherent competition between excited state lifetime and photoluminescence quantum yield (PLQY). Herein, we report the bottom-up self-assembly of transparent metal-organic framework (MOF) bulk glasses exhibiting direct ultralong all-phosphorescence (lifetime: 630.15 ms) with a PLQY of up to 75 % at ambient conditions. These macroscopic MOF glasses have high Young's modulus and hardness, which provide a rigid environment to reduce non-radiative transitions and boost triplet excitons. Spectral technologies and theoretical calculations demonstrate the photoluminescence of MOF glasses is directly derived from the different triplet excited states, indicating the great capability for color-tunable afterglow emission. We further developed information storage and light-emitting devices based on the efficient and pure RTP of the fabricated MOF photonic glasses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据