4.8 Article

Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202207666

关键词

Carbon Dioxide Capture; Electrochemical Carbon Dioxide Reduction; Imidazolium; Iron Porphyrin; Second-Sphere Effect

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, via the Division of Chemical Sciences, Geosciences, and Bioscience of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]
  2. NSERC (Canada)
  3. NSF
  4. NIH [S10OD024998, S10OD023532]

向作者/读者索取更多资源

By decorating iron porphyrins with imidazolium pendants, a family of multifunctional secondary coordination sphere groups is developed to enhance catalytic performance in synthetic systems. In the electrochemical CO2 reduction reaction (CO2RR), these imidazolium units promote multiple synergistic effects to increase CO2RR activity. The study also reveals that through-space charge effects have a stronger impact on catalytic CO2RR performance than hydrogen bonding in this context.
Microenvironments tailored by multifunctional secondary coordination sphere groups can enhance catalytic performance at primary metal active sites in natural systems. Here, we capture this biological concept in synthetic systems by developing a family of iron porphyrins decorated with imidazolium (im) pendants for the electrochemical CO2 reduction reaction (CO2RR), which promotes multiple synergistic effects to enhance CO2RR and enables the disentangling of second-sphere contributions that stem from each type of interaction. Fe-ortho-im(H), which poises imidazolium units featuring both positive charge and hydrogen-bond capabilities proximal to the active iron center, increases CO2 binding affinity by 25-fold and CO2RR activity by 2000-fold relative to the parent Fe tetraphenylporphyrin (Fe-TPP). Comparison with monofunctional analogs reveals that through-space charge effects have a greater impact on catalytic CO2RR performance compared to hydrogen bonding in this context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据