4.8 Article

Oxidative Elimination and Reductive Addition of Thiol-Terminated Polymer Ligands to Metal Nanoparticles

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202202405

关键词

Detachment and Re-Attachment; Gold Nanoparticles; Oxidative Elimination; Reductive Addition; Reversible Assembly

资金

  1. Discovery grant (NSERC Canada)
  2. National Natural Science Foundation of China [21975094, 22133002]
  3. JLU Science and Technology Innovative Research Team [2021TD03]
  4. Open Project of State Key Laboratory of Supramolecular Structure and Material [sklssm2021015]
  5. Jilin Province International Collaboration Base of Science and Technology [YDZJ202102CXJD004]

向作者/读者索取更多资源

Metal nanoparticles stabilized with thiol-terminated polymers have various applications. The oxidation of surface metal atoms is proposed as a mechanism for the oxidative elimination of polymer from the nanoparticle surface. By reducing the oxidized metal surface and re-attaching thiol-terminated polymer ligands, the colloidal stability of polymer-capped metal nanoparticles can be improved and their redox stimuli-responsive self-assembly can be controlled.
Metal nanoparticles (NPs) stabilized with thiol- (HS-) terminated polymers have applications in medicine, optoelectronics, and catalysis. It is assumed that upon exposure to oxidants or even air, these NPs lose colloidal stability, due to the oxidation of the HS-end-group and elimination of polymer ligands from the NP surface, however, this mechanism does not explain the unsuccessful recovery of the NP stability by adding fresh HS-terminated polymers. Here we propose the oxidation of the surface metal atoms as a mechanism for the oxidative elimination of polymer from the NP surface. Based on this mechanism, we reversed NP aggregation by reducing the oxidized metal surface and re-attaching HS-terminated polymer ligands. This mechanism is general for various metal NPs and different HS-terminated polymers. We show that oxidative elimination and reductive addition reactions can improve the colloidal stability of polymer-capped metal NPs and control their redox stimuli-responsive self-assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据