4.8 Article

Contactless Photoelectrochemical Biosensor Based on the Ultraviolet-Assisted Gas Sensing Interface of Three-Dimensional SnS2 Nanosheets: From Mechanism Reveal to Practical Application

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c02010

关键词

-

资金

  1. National Natural Science Foundation ofChina [21874022, 21675029]

向作者/读者索取更多资源

This work presents a contactless photoelectrochemical biosensor utilizing an ultraviolet-assisted gas sensor and a homemade three-dimensional SnS2 nanosheet-functionalized interdigitated electrode. The gas responsiveness was found to accelerate and the sensitivity increased using the UV irradiation strategy. The effects of interlayer structure and Schottky heterojunction on the gas-sensitive response were further investigated to reveal the mechanism.
This work reports a contactless photoelectrochemical biosensor based on an ultraviolet-assisted gas sensor (UV-AGS) with a homemade three-dimensional (3D)-SnS2 nanosheet-functionalized interdigitated electrode. After rigorous examination, it was found that the gas responsiveness accelerated and the sensitivity increased using the UV irradiation strategy. The effects of the interlayer structure and the Schottky heterojunction on the gas-sensitive response of O-2 and NH3 under UV irradiation were further investigated theoretically by 3D electrostatic field simulations and first-principles density functional theory to reveal the mechanism. Finally, a UV-AGS device was developed to quantify the blood ammonia bioassay in a small-volume whole blood sample by alkalizing blood to release gas-phase ammonia with a linear range of 25-5000 mu M with a limit of detection (LOD) of 29.5 mu M. The device also enables a rapid immunoassay of human cardiac troponin I (cTnI) with a linear range of 0.4-25.6 ng/mL and an LOD of 0.37 ng/mL using a urease-labeled antibody as the immune recognition molecule. Both analyses showed satisfying specificity and stability, suggesting that the device can be applied to practical assays and is of great potential to increase the value of gas-sensitive sensors in chemical biosensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据