4.8 Article

Periodic Nanoporous Inorganic Patterns Directly Made by Self-Ordering of Cracks

期刊

ADVANCED MATERIALS
卷 34, 期 36, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202204489

关键词

cracks; inorganic materials; patterning; photonics; porous films

资金

  1. European Research Council (ERC) under European Union [803220]
  2. College de France
  3. Foundation for Polish Science (FNP)
  4. European Research Council (ERC) [803220] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

In this work, a crack formation technique is used to pattern porous inorganic films, allowing for the creation of periodic structures and sub-surface patterns of various inorganic materials. The method offers a cost-effective and efficient way to achieve advanced functionality in various applications.
Solution-processed inorganic nanoporous films are key components for the vast spectrum of applications ranging from dew harvesting to solar cells. Shaping them into complex architectures required for advanced functionality often needs time-consuming or expensive fabrication. In this work, crack formation is harnessed to pattern porous inorganic films in a single step and without using lithography. Aqueous inks, containing inorganic precursors and polymeric latexes enable evaporation-induced, defect-free periodic arrays of cracks with tunable dimensions over several centimeters. The ink formulation strategy is generalized to more than ten inorganic materials including simple and binary porous oxide and metallic films covering a whole spectrum of properties including insulating, photocatalytic, electrocatalytic, conductive, or electrochromic materials. Notably, this approach enables 3D self-assembly of cracks by stacking several layers of different compositions, yielding periodic assemblies of polygonal shapes and Janus-type patterns. The crack patterned periodic arrays of nanoporous TiO2 diffract light, and are used as temperature-responsive diffraction grating sensors. More broadly, this method represents a unique example of a self-assembly process leading to long-range order (over several centimeters) in a robust and controlled way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据