4.8 Article

Hesperetin Nanoparticle Targeting Neutrophils for Enhanced TBI Therapy

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 32, 期 43, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202205787

关键词

hesperetin; myeloperoxidase; nanoparticles; neutrophils; traumatic brain injury

资金

  1. Postdoctoral Research Foundation of China [2020TQ0253, 2020M682927]

向作者/读者索取更多资源

In this study, a nanodrug targeting neutrophils and myeloperoxidase (MPO) was designed to enhance the retention and sustained release of drug cargos for improved traumatic brain injury (TBI) therapy. The findings demonstrated that the neutrophil-targeting nanoparticles effectively inhibited neuroinflammation and improved neurological deficits through sustained release of the drug in the brain.
Traumatic brain injury (TBI) is the main cause of death and disability in people of all ages worldwide. Neuroinflammation plays beneficial and harmful roles in secondary brain injury. Neutrophils play an important role in chemically mediated inflammatory responses through myeloperoxidase (MPO) and inflammation triggered by TBI. Herein, a nanodrug targeting neutrophils and MPO through chemical and biological functions after TBI is designed to enhance the retention and sustained release of drug cargos for improved TBI therapy. 5-Hydroxytryptamide (5-HT) is modified on nanoparticles (NPs) loaded with an anti-inflammatory and antioxidant natural product, hesperetin, to obtain MPO- and neutrophil-targeting NPs, denoted as T-Hes. In a mouse TBI model, it is confirmed that neutrophil-targeting NPs can quickly accumulate and remain in the brain tissue, reduce the secretion of inflammatory factors, and the level of microglia and astrocytes, subsequently inducing the transformation of microglia from pro-inflammatory M1 to anti-inflammatory M2 cells and promoting the infiltration of regulatory T cells (Tregs). T-Hes significantly inhibits neuroinflammation and improves neurological deficits through the sustained release of hesperetin in the brain. The findings may open up new avenues for designing clinically translatable probes for TBI treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据