4.7 Article

A framework and method for Human-Robot cooperative safe control based on digital twin

期刊

ADVANCED ENGINEERING INFORMATICS
卷 53, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2022.101701

关键词

Human-robot collaboration; Digital twin; Safety control; Machine vision; Convolutional neural network

资金

  1. National Natural Science Foundation of China [52175256, 51905493]
  2. Key scientific and tech- nological projects in Henan Province [212102210070, 212102210074]

向作者/读者索取更多资源

This paper proposes an HRC safety control framework and method based on digital twin, which ensures the safety of HRC through the application of virtual twins in the design and production phases.
Human-robot collaboration (HRC) combines the robot's mechanical properties and predictability with human experience, logical thinking, and strain capabilities to alleviate production efficiency. However, ensuring the safety of the HRC process in-real time has become an urgent issue. Digital twin extends functions of virtual models in the design phase of the physical counterpart in the production phase through virtual-real interactive feedback, data fusion analysis, advanced computational features, etc. This paper proposes an HRC safety control framework and corresponding method based on the digital twin. In the design phase, virtual simulation and virtual reality technology are integrated to construct virtual twins of various HRC scenarios for testing and analyzing potential safety hazards. In the production phase, the safety distance between humans and robots of the HRC scene is monitored and calculated by an iterative algorithm according to machine vision and a con-volutional neural network. Finally, the virtual twin is driven based on real-scene data, real-time online visual monitoring, and optimization of the HRC's overall process. A case study using ABB-IRB1600 is presented to verify the feasibility of the proposed approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据