4.7 Article

On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks

期刊

ADVANCED ENGINEERING INFORMATICS
卷 53, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2022.101689

关键词

Transfer learning; Multi -fidelity model; Data fusion; Deep neural network; Ensemble of surrogates

资金

  1. National Natural Science Foundation of China [11902065, 11825202]
  2. Fundamental Research Funds for the Central Universities [DUT21RC (3) 013]

向作者/读者索取更多资源

In this paper, a novel method called on-line transfer learning based multi-fidelity data fusion (OTL-MFDF) is proposed to improve the prediction accuracy of DNN. The method includes two parts: establishing an ensemble model of DNNs and developing an on-line learning system for adaptive updating. Experimental results demonstrate the effectiveness, global prediction accuracy, and applicability of the OTL-MFDF method.
Deep Neural Network (DNN) is widely used in engineering applications for its ability to handle problems with almost any nonlinearities. However, it is generally difficult to obtain sufficient high-fidelity (HF) sample points for expensive optimization tasks, which may affect the generalization performance of DNN and result in inaccurate predictions. To solve this problem and improve the prediction accuracy of DNN, this paper proposes an on-line transfer learning based multi-fidelity data fusion (OTL-MFDF) method including two parts. In the first part, the ensemble of DNNs is established. Firstly, a large number of low-fidelity sample points and a few HF sample points are generated, which are used as the source dataset and target dataset, respectively. Then, the Bayesian Optimization (BO) is utilized to obtain several groups of hyperparameters, based on which DNNs are pre-trained using the source dataset. Next, these pre-trained DNNs are re-trained by fine-tuning on the target dataset, and the ensemble of DNNs is established by assigning different weights to each pre-trained DNN. In the second part, the on-line learning system is developed for adaptive updating of the ensemble of DNNs. To evaluate the uncertainty error of the predicted values of DNN and determine the location of the updated HF sample point, the query-by-committee strategy based on the ensemble of DNNs is developed. The Covariance Matrix Adaptation Evolutionary Strategies is employed as the optimizer to find out the location where the maximal disagreement is achieved by the ensemble of DNNs. The design space is partitioned by the Voronoi diagram method, and then the selected point is moved to its nearest Voronoi cell boundary to avoid clustering between the updated point and the existing sample points. Three different types of test problems and an engineering example are adopted to illustrate the effectiveness of the OTL-MFDF method. Results verify the outstanding efficiency, global prediction accuracy and applicability of the OTL-MFDF method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据