4.4 Article

Effect of pellet size on PSA performance: monolayer and multilayer bed case study for biogas upgrading

出版社

SPRINGER
DOI: 10.1007/s10450-022-00365-9

关键词

Layered bed; Pellet size; Biogas; Model; Pressure swing adsorption

向作者/读者索取更多资源

A demand-driven pressure swing adsorption biogas upgrading application was modeled using monolayer and multilayered beds. The study found that pellet size has an impact on sorption kinetics and flow resistance, with an optimal size for monolayered beds. Additionally, the configuration of bilayered beds also affects product purity.
A demand-driven pressure swing adsorption biogas upgrading application is modelled using monolayer and multilayered (bilayer) beds, to gain insight on the impact of the adsorbent pellet size on the overall performance of such processes. Pellet radii in the range of 0.1-2.4 mm were studied, for fixed cycle settings and column dimensions. Varying the pellet size influences the sorption kinetics and flow resistance, resulting in the existence of an optimum pellet size for monolayered beds. For fixed cycle settings, small pellets may yield higher purities at low total productivities, yet show a more rapid decrease in product purity with increasing productivities due to the higher pressure drop. Furthermore, 18 configurations with beds containing a layer of larger pellets and a second layer of smaller pellets (bilayer) were investigated. Bilayered beds with 0.3 mm, 0.6 and 2.4 mm radius pellets were combined, with the first layer taking up 25, 50 or 75% of the bed. With respect to upward flow in the adsorption step, beds with the smallest pellet size in the top layer (LS beds) can offer higher product purity than beds with the smallest pellet in the bottom layer (SL beds). [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据