4.7 Article

Ionic conduction mechanisms in 70Li2S-30P2S5 type electrolytes: experimental and atomic simulation studies

期刊

ACTA MATERIALIA
卷 235, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2022.118106

关键词

Sulfide solid electrolytes; Raman spectroscopy; DFT calculation; Ionic conductivity; Li diffusion pathway

资金

  1. National Research Foundation of Ko-rea (NRF) - Korea government (MSIT) [2021R1A2C2009596]
  2. National Research Foundation of Korea [2021R1A2C2009596] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study explores the collective effects of crystal structure, temperature, and electric field on the ionic conductivity of various electrolytes. The results show that abundant stable Li interstitial sites in the crystals shorten the jumping distance for Li self-diffusion, while charge polarization of the P2S7 cluster widens the Li diffusion passage. These findings fill the knowledge gaps regarding the ionic conduction mechanisms and provide design criteria for developing highly conductive solid electrolytes.
Although understanding the structure-property relationship in solid electrolytes is pivotal to develop electrolytes with improved properties, previous studies examined only the partial effect of the structures and did not consider the realistic operating environments. Here, experimental investigations and theoretical simulations are used to explore the collective effects of crystal structure, temperature, and electric field on the ionic conductivity of various electrolytes with the 70Li(2)S-30P(2)S(5) composition. Each electrolyte sample is composed of a mixture of three distinct crystalline phases: gamma-Li3PS4, Li7P3S11, and Li4P2S6, each of which is comprised of the PS4, P2S7, and P2S6 substructures in varying fractions and spatial distributions. Atomic simulations confirm that the abundant stable Li interstitial sites in these crystals, particularly Li7P3S11, shorten the jumping distance for Li self-diffusion. On the other hand, charge polarization of the P2S7 cluster amplifies its oscillatory motion in the presence of an electric field and at ambient temperatures, thereby widening the Li diffusion passage. The reduction in the Li jumping distance, as well as the widening of the diffusion passage, reduce the energy barriers for Li diffusion, allowing for fast Li transport. While the present findings fill the knowledge gaps regarding the ionic conduction mechanisms of the 70Li(2)S-30P(2)S(5) electrolytes, they also provide design criteria for developing highly conductive solid electrolytes.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据