4.8 Article

Evolution of Nanometer-Scale Microstructure within Grains and in the Intergranular Region in Thermoelectric Mg3(Sb, Bi)2 Alloys

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 33, 页码 37958-37966

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c09905

关键词

Thermoelectrics; Microstructure; Grain Boundary; Mg3Bi2; Mg3Sb2; Thermal Conductivity; Atom Probe Tomography

资金

  1. Thermal and Electric Energy Technology Foundation (TEET)
  2. Thermal and Electric Energy Technology Foundation (TEET)

向作者/读者索取更多资源

This study investigates the microstructure of n-type Mg3Sb2-Mg3Bi2 alloys using scanning transmission electron microscopy and atom probe tomography. Nanosized compositional fluctuations and a Bi-rich phase were observed within the matrix and at the grain boundary. After annealing, the intergranular phase became sharper, resulting in greater compositional changes in the intergranular region. Annealing significantly reduced the fluctuations of Bi and Mg content within the grain, leading to increased weighted mobility and lattice thermal conductivity. The combined effect of intragrain and grain boundary effects resulted in an increased thermoelectric figure-of-merit zT.
n-type Mg3Sb2-Mg3Bi2 alloys have been investigated as one of the most promising thermoelectric materials. To achieve high performance, a detailed understanding of the microstructure is required. Although Mg3Sb2-Mg3Bi2 is usually considered to be a complete solid solution, nanosized compositional fluctuations were observed within a matrix and in the vicinity of the grain boundary. As an inhomogeneous microstructure can be beneficial or detrimental to thermoelectric performance, it is important to investigate the evolution of compositional variations for the engineering and long-term use of these materials. Using scanning transmission electron microscopy and atom probe tomography, a Bi-rich phase and compositional fluctuations are observed in sintered and annealed samples. After annealing, the broad intergranular phase was sharpened, resulting in a greater compositional change in the intergranular region. Annealing considerably reduces the fluctuations of Bi and Mg content within the grain as observed in atom probe tomography. Weighted mobility and lattice thermal conductivity were both increased as a result of the homogenized matrix phase. The combined microstructure features of intragrain and grain boundary effects resulted in an increased thermoelectric figure-of-merit zT of Mg3Sb0.6Bi1.4. These findings imply that the optimization of thermal and electrical properties can be realized through microstructure tuning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据