4.7 Article

Compatible Intrinsic Triangulations

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 41, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3528223.3530175

关键词

cross-parameterization; inter-surface mapping; bijection; texture transfer; intrinsic triangulation; compatible triangulation

向作者/读者索取更多资源

Finding distortion-minimizing homeomorphisms between surfaces of arbitrary genus is a fundamental task in computer graphics and geometry processing. We propose a simple method utilizing intrinsic triangulations to establish consistent images between two models.
Finding distortion-minimizing homeomorphisms between surfaces of arbitrary genus is a fundamental task in computer graphics and geometry processing. We propose a simple method utilizing intrinsic triangulations, operating directly on the original surfaces without going through any intermediate domains such as a plane or a sphere. Given two models A and B as triangle meshes, our algorithm constructs a Compatible Intrinsic Triangulation (CIT), a pair of intrinsic triangulations over A and B with full correspondences in their vertices, edges and faces. Such a tessellation allows us to establish consistent images of edges and faces of A's input mesh over B (and vice versa) by tracing piecewise-geodesic paths over A and B. Our algorithm for constructing CITs, primarily consisting of carefully designed edge flipping schemes, is empirical in nature without any guarantee of success, but turns out to be robust enough to be used within a similar second-order optimization framework as was used previously in the literature. The utility of our method is demonstrated through comparisons and evaluation on a standard benchmark dataset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据