4.7 Article

Characterizing Recent Trends in U.S. Heavy Precipitation

期刊

JOURNAL OF CLIMATE
卷 29, 期 7, 页码 2313-2332

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-15-0441.1

关键词

Atmosphere-ocean interaction; Trends; Climate variability; Physical Meteorology and Climatology; Geographic location/entity; Variability; North America; Climate change

资金

  1. NOAA Climate Program Office MAPP program
  2. NASA MAP program

向作者/读者索取更多资源

Time series of U.S. daily heavy precipitation (95th percentile) are analyzed to determine factors responsible for regionality and seasonality in their 1979-2013 trends. For annual conditions, contiguous U.S. trends have been characterized by increases in precipitation associated with heavy daily events across the northern United States and decreases across the southern United States. Diagnosis of climate simulations (CCSM4 and CAM4) reveals that the evolution of observed sea surface temperatures (SSTs) was a more important factor influencing these trends than boundary condition changes linked to external radiative forcing alone. Since 1979, the latter induces widespread, but mostly weak, increases in precipitation associated with heavy daily events. The former induces a meridional pattern of northern U.S. increases and southern U.S. decreases as observed, the magnitude of which closely aligns with observed changes, especially over the south and far west. Analysis of model ensemble spread reveals that appreciable 35-yr trends in heavy daily precipitation can occur in the absence of forcing, thereby limiting detection of the weak anthropogenic influence at regional scales. Analysis of the seasonality in heavy daily precipitation trends supports physical arguments that their changes during 1979-2013 have been intimately linked to internal decadal ocean variability and less so to human-induced climate change. Most of the southern U.S. decrease has occurred during the cold season that has been dynamically driven by an atmospheric circulation reminiscent of teleconnections linked to cold tropical eastern Pacific SSTs. Most of the northeastern U.S. increase has been a warm season phenomenon, the immediate cause for which remains unresolved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据