4.7 Article

Multigrid-Based Methodology for Implicit Solvation Models in Periodic DFT

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 12, 期 3, 页码 1331-1341

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.5b00949

关键词

-

资金

  1. European Research Council [ERC-2010-StG-258406]
  2. MINECO [CTQ2012-33826]

向作者/读者索取更多资源

Continuum solvation models have become a widespread approach for the study of environmental effects in Density Functional Theory (DFT) methods. Adding solvation contributions mainly relies on the solution of the Generalized Poisson Equation (GPE) governing the behavior of the electrostatic potential of a system. Although multigrid methods are especially appropriate for the solution of partial differential equations, up to now, their use is not much extended in DFT-based codes because of their high memory requirements. In this Article, we report the implementation of an accelerated multigrid solver-based approach for the treatment of solvation effects in the Vienna ab initio Simulation Package (VASP). The stated implicit solvation model, named VASP-MGCM (VASP-Multigrid Continuum Model), uses an efficient and transferable algorithm for the product of sparse matrices that highly outperforms serial multigrid solvers. The calculated solvation free energies for a set of molecules, including neutral and ionic species, as well as adsorbed molecules on metallic surfaces, agree with experimental data and with simulation results obtained with other continuum models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据