4.7 Article

Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 12, 期 8, 页码 3894-3912

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.6b00456

关键词

-

资金

  1. Research Board of Ghent University (BOF)
  2. BELSPO [IAP/7/05]
  3. European Research Council [647755-DYNPOR]
  4. Vanier-CGS fellowship
  5. Michael Smith Foreign Study Supplement from the National Sciences and Engineering Research Council of Canada (NSERC)
  6. NSERC

向作者/读者索取更多资源

Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate pro-density is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g., obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method, but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Scheffler scheme for dispersion interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据