4.7 Article

Semiflexible polymers under good solvent conditions interacting with repulsive walls

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 144, 期 17, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4947254

关键词

-

资金

  1. Alexander von Humboldt Foundation
  2. [BI314/24]

向作者/读者索取更多资源

Solutions of semiflexible polymers confined by repulsive planar walls are studied by density functional theory and molecular dynamics simulations, to clarify the competition between the chain alignment favored by the wall and the depletion caused by the monomer-wall repulsion. A coarse-grained bead-spring model with a bond bending potential is studied, varying both the contour length and the persistence length of the polymers, as well as the monomer concentration in the solution (good solvent conditions are assumed throughout, and solvent molecules are not included explicitly). The profiles of monomer density and pressure tensor components near the wall are studied, and the surface tension of the solution is obtained. While the surface tension slightly decreases with chain length for flexible polymers, it clearly increases with chain length for stiff polymers. Thus, at fixed density and fixed chain length, the surface tension also increases with increasing persistence length. Chain ends always are enriched near the wall, but this effect is much larger for stiff polymers than for flexible ones. Also the profiles of the mean square gyration radius components near the wall and the nematic order parameter are studied to clarify the conditions where wall-induced nematic order occurs. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据