4.7 Article

The microscopic structure of cold aqueous methanol mixtures

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 145, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4964487

关键词

-

资金

  1. Croatian Science Foundation [4514]
  2. French Embassy in Croatia through bourse du Gouvernement Francais

向作者/读者索取更多资源

The evolution of the micro-segregated structure of aqueous methanol mixtures, in the temperature range 300 K-120 K, is studied with computer simulations, from the static structural point of view. The structural heterogeneity of water is reinforced at lower temperatures, as witnessed by a pre-peak in the oxygen-oxygen structure factor. Water tends to form predominantly chain-like clusters at lower temperatures and smaller concentrations. Methanol domains have essentially the same chain-like cluster structure as the pure liquid at high concentrations and becomes monomeric at smaller ones. Concentration fluctuations decrease with temperature, leading to quasi-ideal Kirkwood-Buff integrals, despite the enhanced molecular interactions, which we interpret as the signature of non-interacting segregated water and methanol clusters. This study throws a new light on the nature of the micro-heterogeneous structure of this mixture: the domain segregation is essentially based on the appearance of linear water clusters, unlike other alcohol aqueous mixtures, such as with propanol or butanol, where the water domains are more bulky. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据