4.7 Article

Play the heavy: An effective mass study for α-Fe2O3 and corundum oxides

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 144, 期 16, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4946752

关键词

-

资金

  1. Morantz Energy Research Fund
  2. Nancy and Stephen Grand Technion Energy Program
  3. I-CORE Program of the Planning and Budgeting Committee
  4. Israel Science Foundation [152/11]

向作者/读者索取更多资源

Iron(III) oxide (alpha-Fe2O3) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in alpha-Fe2O3, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in alpha-Fe2O3 and other corundum oxides, including Al2O3, Cr2O3, Ga2O3, and In2O3 with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G(0)W(0). We find DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe2O3 play the heavy since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe2O3 could contribute to efficiency improvements in Fe2O3 upon Al2O3, Ga2O3, and In2O3 coverage. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据