4.7 Article

A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 144, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4943001

关键词

-

资金

  1. Conacyt [S52208-F]
  2. University of Sonora [FEC-2012-03]

向作者/读者索取更多资源

The topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering. A two-step crystallization pathway is found, in which the population of bcc-subunit CNA-pairs satisfactorily obeys a Verhulst model. Moreover, the CNA helped to unveil that the excess entropy obeys a quasi-universal functional form, relating the behavior of colloidal, molecular, and metallic liquid systems. The work contributes to the scientific understanding of the crystallization pathway of charged colloids, and to the development of new ways to assess the degree of crystalline order, starting from the excess entropy. (C) 2016 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据