4.2 Article

LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity

期刊

JOURNAL OF CHEMICAL NEUROANATOMY
卷 76, 期 -, 页码 90-97

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jchemneu.2016.01.007

关键词

Parkinson's Disease; LRRK2; Dopamine; Stereology; MPTP; Genetic factor; Environmental factor

资金

  1. NIH [NS38377]
  2. JPB Foundation (TMD)
  3. NIH/NIA [K01-AG046366]
  4. William N. & Bernice E. Bumpus Foundation Innovation Awards
  5. Samsung Scholarship Foundation
  6. Parkinson's Disease Foundation Summer Student Fellowship [PDF-SFW-1572]

向作者/读者索取更多资源

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of late onset autosomal dominant form of Parkinson disease (PD). Gain of kinase activity due to the substitution of Gly 2019 to Ser (G2019S) is the most common mutation in the kinase domain of LRRK2. Genetic predisposition and environmental toxins contribute to the susceptibility of neurodegeneration in PD. To identify whether the genetic mutations in LRRK2 increase the susceptibility to environmental toxins in PD models, we exposed transgenic mice expressing human G2019S mutant or wild type (WT) LRRK2 to the environmental toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP treatment resulted in a greater loss of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc) in LRRK2 G2019S transgenic mice compared to the LRRK2 WT overexpressing mice. Similarly loss of dopamine levels were greater in the striatum of LRRK2 G2019S mice when compared to the LRRK2 WT mice when both were treated with MPTP. This study suggests a likely interaction between genetic and environmental risk factors in the PD pathogenesis and that the G2019S mutation in LRRK2 increases the susceptibility of dopamine neurons to PD-causing toxins. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据