4.8 Article

IDH2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Hypoxia Pathways in Acute Myeloid Leukemia

期刊

CANCER RESEARCH
卷 75, 期 10, 页码 2005-2016

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-14-2200

关键词

-

类别

资金

  1. Ministry of Health, Labor and Welfare
  2. Ministry of Education, Culture, Sports, Science and Technology
  3. National Cancer Center Research and Development Fund
  4. Grants-in-Aid for Scientific Research [22130006, 25871159] Funding Source: KAKEN

向作者/读者索取更多资源

IDH1 and IDH2 mutations occur frequently in acute myeloid leukemia (AML) and other cancers. The mutant isocitrate dehydrogenase (IDH) enzymes convert a-ketoglutarate (a-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), which dysregulates a set of a-KG-dependent dioxygenases. To determine whether mutant IDH enzymes are valid targets for cancer therapy, we created a mouse model of AML in which mice were transplanted with nucleophosmin1 (NPM)(+/-) hematopoietic stem/progenitor cells cotransduced with four mutant genes (NPMc, IDH2/R140Q, DNMT3A/R882H, and FLT3/ITD), which often occur simultaneously in human AML patients. Conditional deletion of IDH2/R140Q blocked 2-HG production and maintenance of leukemia stem cells, resulting in survival of the AML mice. IDH2/R140Q was necessary for the engraftment or survival of NPMc(+) cells in vivo. Gene expression analysis indicated that NPMc increased expression of Hoxa9. IDH2/R140Q also increased the level of Meis1 and activated the hypoxia pathway in AML cells. IDH2/R140Q decreased the 5hmC modification and expression of some differentiation-inducing genes (Ebf1 and Spib). Taken together, our results indicated that IDH2 mutation is critical for the development and maintenance of AML stem-like cells, and they provided a preclinical justification for targeting mutant IDH enzymes as a strategy for anticancer therapy. (C) 2015 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据