4.5 Article

Grinding of maize: The effects of fine grinding on compositional, functional and physicochemical properties of maize flour

期刊

JOURNAL OF CEREAL SCIENCE
卷 68, 期 -, 页码 25-30

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jcs.2015.11.004

关键词

Particle size; Protein; Damaged starch; Hydration capacity

资金

  1. Northwest AF University [K332021107]
  2. Japan International Research Centre for Agricultural Science [K332021107]

向作者/读者索取更多资源

The particle size of maize flour has a significant effect on its functional and physicochemical properties. In this study, maize grits were ground for various time intervals (3.5, 4, 5, 6, 10 and 14 min), and grinding effects on compositional, functional and physicochemical properties of maize flour were evaluated by using rapid visco analyzer (RVA), differential scanning calorimeter (DSC), sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and other chemical methods. The results showed that grinding could effectively pulverize the flour particles. As particle size decreases, the damaged starch and amylose content, gelatinization degree, hydration capacity, water solubility index and water absorption index were significantly (P < 0.05) increased. Grinding caused reduction in trough viscosity, final viscosity and peak time and an increase in peak viscosity and breakdown of maize flours. The starch isolated from different time treated maize flour exhibited a decrease in transition gelatinization temperature (T., T2 and Tc) and gelatinization enthalpy, whereas grinding treatments have no effects on protein content and protein primary structure of maize flour. Grinding treatment changes in the damaged granules and particle size distribution are responsible for the different maize flour properties. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据