4.7 Article

Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 231, 期 10, 页码 2142-2152

出版社

WILEY
DOI: 10.1002/jcp.25315

关键词

-

资金

  1. FONDECYT (Fondo Nacional de Desarrollo Cientifico y Tecnologico, Chile) [1141033, 3130449]

向作者/读者索取更多资源

Glycogen is the main storage form of glucose; however, the accumulation of glycogen-like glucose polymers can lead to degeneration and cellular death. Previously, we reported that the accumulation of glycogen in testis of transgenic animals overexpressing a constitutively active form of glycogen synthase enhances the apoptosis of pre-meiotic male germ cells and a complete disorganization of the seminiferous tubules. Here we sought to further identify the effects of glycogen storage in cells from the seminiferous tubules and the mechanism behind the pro-apoptotic activity induced by its accumulation. Using an in vitro culture of Sertoli cells (line 42GPA9) and spermatocyte-like cells (line GC-1) expressing a superactive form of glycogen synthase or the Protein Targeting to Glycogen (PTG), we found that glycogen synthesized in both cell lines is poorly branched. In addition, the immunodetection of key molecules of apoptotic events suggests that cellular death induced by polyglucosan molecules affects GC-1 cells, but not 42GPA9 cells by mitochondrial impairment and activation of an intrinsic apoptotic pathway. Furthermore, we analyzed the effects of glycogen deposition during the establishment of an in vitro blood-testis barrier. The results using a non-permeable fluorescent molecule showed that, in conditions of over-synthesis of glycogen, 42GPA9 cells do not lose their capacity to generate an impermeable barrier and the levels of connexin43, occludin, and ZO1 proteins were not affected. These results suggest that the accumulation of polyglucosan molecules has a selective effecttriggered by the intrinsic activation of the apoptotic pathwayin germ cells without directly affecting Sertoli cells. J. Cell. Physiol. 231: 2142-2152, 2016. (c) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据