4.4 Article

Long term dynamics of surface fluctuation in a peat swamp forest in Sarawak, Malaysia

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/2515-7620/ac6295

关键词

peat surface fluctuation; surface fluctuation dynamics; tropical peatlands; water table

资金

  1. Sarawak State Government
  2. Federal Government of Malaysia

向作者/读者索取更多资源

This study determined the long-term dynamics of peat surface fluctuation in an undrained peat swamp forest, finding a positive linear relationship between peat surface level and water table depth, and that the presence of vacant zones in the peat profile may affect surface fluctuation.
Tropical peatland is a complex and globally important wetland ecosystem, storing an enormous amount of the Earth's terrestrial carbon from centuries of organic material accumulation. In this ecosystem, peat swamp forests developed over an ombrogenous peat where hydrology influences its physico-chemical properties, one of which is fluctuation of the peat surface. While several studies of tropical peatland surface fluctuation have been reported, most are based on relatively short measurement periods or focused on drained areas. Hence, the objective of this study is to determine the long-term dynamics of peat surface fluctuation from an undrained peat swamp forest in relation to its water table depth. Peat surface level, water table, and rainfall were measured monthly at three experimental sites in a peat swamp forest in Sarawak, Malaysia over a period of about 10 years (2011-2020). The sites were different in soil structure and vegetation community; namely mixed peat swamp, Alan Batu, and Alan Bunga forests. Throughout the measurement period the peat surface in all sites exhibited consistent oscillating movement that generally follow the fluctuation of water table, with swelling and subsidence occurring after water table increase following high rainfall and receding water during dry spells respectively. Positive linear relationships were also found between peat surface level and water table (p < 0.05). Both the surface level and water table at all sites fell to their lowest during an intense dry period in 2019. Surface fluctuation at the Alan Batu site was most affected by seasonal changes in water table, which may be due to presence of vacant zones in the peat profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据