4.6 Article

Role of Cyclic Nucleotide Phosphodiesterases During Meiotic Resumption From Diplotene Arrest in Mammalian Oocytes

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 118, 期 3, 页码 446-452

出版社

WILEY
DOI: 10.1002/jcb.25748

关键词

PDEs; CYCLIC NUCLEOTIDES; MPF; MEIOTIC CELL CYCLE; MAMMALIAN OOCYTES

资金

  1. Department of Science and Technology, Ministry of Science and Technology, Government of India

向作者/读者索取更多资源

Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes that hydrolyze cyclic nucleotides in wide variety of cell types including encircling granulosa cells as well as associated oocytes. One group of PDEs are located in encircling granulosa cells and another group get expressed in the oocyte, while few other PDEs are expressed in both compartments. The PDE1A, PDE4D, PDE5A, PDE8A, and PDE8B are granulosa cell specific PDEs that hydrolyze adenosine 3,5-cyclic monophosphate (cAMP) as well as guanosine 3,5-cyclic monophosphate (cGMP) with different affinities. PDE3A, PDE8A as well as PDE9A are expressed in oocyte and specifically responsible for the cyclic nucleotide hydrolysis in the oocyte itself. Few other PDEs such as PDE7B, PDE10A, and PDE11A are either detected in granulosa cells or oocytes. Activation of these PDEs either in encircling granulosa cells or in oocyte directly or indirectly reduces intraoocyte cAMP level. Reduction of intraoocyte cAMP level modulates phosphorylation status of cyclin-dependent kinase 1 (Cdk1) and triggers cyclin B1 degradation that destabilizes maturation promoting factor (MPF) and/or increases Cdk1 activity. The destabilized MPF and/or increased Cdk1 activity leads to resumption of meiosis, which initiates the achievement of meiotic competency in preovulatory follicles of several mammalian species. Use of specific PDEs inhibitors block cyclic nucleotides hydrolysis that results in increase of intraoocyte cyclic nucleotides level, which leads to maintenance of meiotic arrest at diplotene stage in vivo as well as in vitro. Thus, cyclic nucleotide PDEs play important role in the achievement of meiotic competency by reducing intraoocyte cyclic nucleotides level in mammalian oocytes. J. Cell. Biochem. 118: 446-452, 2017. (c) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据