4.7 Article

Computational Study of Low-Energy Pt-Ion Implantation into Graphene for Single-Atom Catalysis

期刊

ACS APPLIED NANO MATERIALS
卷 5, 期 6, 页码 8583-8593

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.2c02051

关键词

ion implantation; direct displacement doping; indirect trap doping; molecular dynamics simulation; first-principles calculations

资金

  1. National Natural Science Foundation of China [11705010, 11775005]

向作者/读者索取更多资源

In this work, a novel ultralow-energy ion-implantation (ULEII) method is proposed for the synthesis of stable single-atom catalysts (SACs) in a simple and efficient manner. The simulation results and calculations demonstrate that the ULEII method can optimize the doping efficiency and effectively capture and anchor metal atoms on graphene surfaces.
Single-atom catalysts (SACs) represent the ultimate goal of nanocatalysis fields. However, complex synthesis processes and pyrolysis inactivation problems are the two main challenges that plague the development of SACs. In this work, we propose that the ultralow-energy ion-implantation (ULEII) method could be utilized to simply and efficiently synthesize stable SACs. Our simulation results of Pt-ion implantation into graphene indicate that the total doping efficiency, including direct displacement doping and indirect trap doping, can be effectively optimized by delicately adjusting the energy of incident ions. Further systematic molecular dynamics simulations and first-principles calculations demonstrate that irradiation-induced vacancy defects can effectively capture and anchor adsorbed metal atoms on the graphene surface. The stability and migration characteristics of various defects are also clearly elucidated. Theoretically, by selecting an optimal ion energy, the ULEII method can achieve a doping efficiency as high as 73.4%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据