4.7 Article

Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters

期刊

ACS APPLIED NANO MATERIALS
卷 5, 期 6, 页码 8070-8079

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.2c01197

关键词

InAs/InP quantum dots; droplet epitaxy; substrate etching; X-STM; InAs etch pits

资金

  1. European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie project 4PHOTON [721394]
  2. Dutch Research Council (NWO) Zwaartekracht Project on Integrated Nanophotonics [10018478]
  3. EPSRC National Hub for High Value Photonics Manufacturing [EP/N00762X/1]
  4. EPSRC [EP/N00762X/1] Funding Source: UKRI

向作者/读者索取更多资源

We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal-organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). We observed two different etching processes, local drilling and long-range etching, depending on the crystallization temperature. The study also revealed the formation of trenches and provided insights into the composition and fine structure splitting of the QDs.
We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal-organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of <= 500 degrees C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges. During crystallization, the As atoms diffuse into the droplet and crystallize at the solid-liquid interface, forming an InAs etch pit underneath the QD. In long-range etching, occurring at higher temperatures of >500 degrees C, the InP layer is destabilized and the In atoms from the surroundings migrate toward the droplet. The P atoms can easily escape from the surface into the vacuum, forming trenches around the QD. We show for the first time the formation of trenches and long-range etching in InAs/InP QDs with atomic resolution. Both etching processes can be suppressed by growing a thin layer of InGaAs prior to the droplet deposition. The QD composition is estimated by finite element modeling in combination with X-STM. The change in the morphology of QDs due to etching can strongly influence the fine structure splitting. Therefore, the current atomic-resolution study sheds light on the morphology and etching behavior as a function of crystallization temperature and provides a valuable insight into the formation of InAs/InP droplet epitaxy QDs which have potential applications in quantum information technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据