4.7 Article

Methylamine-Based Method to Deposit MAPbI3 Nanoscale-Thick Films for Efficient Perovskite Solar Cells with Carbon Electrodes

期刊

ACS APPLIED NANO MATERIALS
卷 5, 期 3, 页码 4112-4118

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.2c00051

关键词

perovskite solar cell; MAPbI(3); low-temperature-derived carbon electrodes; hole transport layer-free; stability

资金

  1. Natural Science Foundation of Shaanxi Province [2020JZ-04]
  2. National Natural Science Foundation of China [61774122]
  3. Key Projects of the Natural Science Foundation of Shandong Province [2020KF001]

向作者/读者索取更多资源

This study reports a method for precise morphology control in the ambient environment for the fabrication of carbon-based, low-temperature solar cells. The method enhances carrier transportation along the vertical direction and reduces carrier recombination, resulting in improved power conversion efficiency for the cells.
Low-temperature-derived carbon-based hole transport layer (HTL)-free perovskite solar cells (PSCs) have garnered considerable interest due to their numerous advantages. However, the power conversion efficiency (PCE) remains significantly lower than those of state-of-the-art PSCs using conventional organic HTLs and noble metal electrodes. Herein, we report a method to deposit MAPbI(3) films in an ambient environment with precise morphology control, which exhibit large grains with highly preferential growth orientation vertical to the substrate, greatly enhancing the transportation of the carriers along the vertical direction and decreasing the carriers' recombination. As a result, the low-temperature processed PSCs with a simple configuration of ITO/SnO2/MAPbI(3)/carbon exhibit a superior PCE of 15.62% accompanied by an open-circuit voltage (V-oc) of 1.021 V. This feasible method can be further extended to large-scale fabrication of fully printed, cost-effective, low-temperature carbon-based HTL-free PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据