4.8 Article

Deep Cavitand Self-Assembled on Au NPs-MWCNT as Highly Sensitive Benzene Sensing Interface

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 26, 页码 4011-4020

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201501234

关键词

benzene; gold nanoparticles; multiwalled carbon nanotubes; oxygen plasma treatment; quinoxaline-walled deep cavitand

资金

  1. Universitat Rovira i Virgili
  2. Catalan Institution for Research and Advanced Studies via the ICREA Academia Award
  3. Generalitat de Catalunya [2014 SGR 1267, 2014 SGR 320]
  4. Gobierno de Espana MINECO [CTQ2011-23014]
  5. Severo Ochoa Excellence Accreditation [SEV-2013-031]
  6. ICIQ Foundation
  7. NATO [SPS 984511]
  8. FNRS-FRFC [2.4577.11]
  9. European Science Foundation [COST TD-1105]
  10. ICREA Funding Source: Custom

向作者/读者索取更多资源

The unprecedented sensitivity and partial selectivity of quinoxaline-walled thioether-legged deep cavitand functionalized multiwall carbon nanotubes toward traces of benzene vapors are presented. The cavitand is grafted onto gold nanoparticle (Au-NP) decorated oxygen plasma treated multiwall carbon nanotubes (O-MWCNT) by a self-assembled monolayer process affording a product referred to as cav-Au-MWCNT. The reported technique is suitable for the mass production of hybrid nanomaterials at low cost. The cav-Au-MWCNT resistive gas sensor operates at room temperature and shows an outstanding performance toward traces of benzene vapors. The detection of 2.5 ppb of benzene in dry air is demonstrated with a limit of detection (LOD) near 600 ppt. For the first time, it is shown that a CNT nanomaterial can effectively sense the extremely harmful benzene molecule with higher sensitivity than toluene or o-xylene at the trace levels. The cavitand is well suited for binding benzene, which, being in close proximity to the MWCNT, affects its density of states (DOS) shifting the Fermi level away from the valence band. The binding of benzene is transduced in a diminution of MWCNT conductance. Furthermore, the inclusion of benzene is fully reversible at room temperature, implying that the sensor can operate at very low power consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据