4.5 Article

The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia

期刊

JOURNAL OF CELL SCIENCE
卷 129, 期 14, 页码 2829-2840

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.179655

关键词

IRTKS; Eps8; WAVE2; Dorsal filopodia; Dorsal ruffles

资金

  1. Agency for Science, Technology and Research (A-STAR), Singapore

向作者/读者索取更多资源

Rif induces dorsal filopodia but the signaling pathway responsible for this has not been identified. We show here that Rif interacts with the I-BAR family protein IRTKS (also known as BAIAP2L1) through its I-BAR domain. Rif also interacts with Pinkbar (also known as BAIAP2L2) in N1E-115 mouse neuroblastoma cells. IRTKS and Rif induce dorsal membrane ruffles and filopodia. Dominant-negative Rif inhibits the formation of IRTKS-induced morphological structures, and Rif activity is blocked in IRTKS-knockout (KO) cells. To further define the Rif-IRTKS signaling pathway, we identify Eps8 and WAVE2 (also known as WASF2) as IRTKS interactors. We find that Eps8 regulates the size and number of dorsal filopodia and membrane ruffles downstream of Rif-IRTKS signaling, whereas WAVE2 modulates dorsal membrane ruffling. Furthermore, our data suggests that Tir, a protein essential for enterohemorrhagic Escherichia coli infection, might compete for Rif for interaction with the I-BAR domain of IRTKS. Based on this evidence, we propose a model in which Rho family GTPases use the I-BAR proteins, IRSp53 (also known as BAIAP2), IRTKS and Pinkbar, as a central mechanism to modulate cell morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据