4.6 Article

Resilience Analysis Framework for a Water-Energy-Food Nexus System Under Climate Change

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.820125

关键词

system resilience; engineering resilience; ecological resilience; sensitivity analysis; climate change; system dynamics modeling; causal loop diagrams; water-energy-food-climate nexus

资金

  1. European Union's Horizon (2020) Research and Innovation Programme [1010003881]

向作者/读者索取更多资源

The article discusses the impact of climate change on water-energy-food security, presents a resilience analysis framework, and introduces a national case study of Greece. Parametric sensitivity analysis and system dynamics modeling are used to quantify system resilience, and two policies are tested to improve the resilience of the system.
Climate change impacts the water-energy-food security; given the complexities of interlinkages in the nexus system, these effects may become exacerbated when feedback loops magnify detrimental effects and create vicious cycles. Resilience is understood as the system's adaptive ability to maintain its functionality even when the system is being affected by a disturbance or shock; in WEF nexus systems, climate change impacts are considered disturbances/shocks and may affect the system in different ways, depending on its resilience. Future global challenges will severely affect all vital resources and threaten environmental resilience. In this article, we present a resilience analysis framework for a water-energy-food nexus system under climate change, and we identify how such systems can become more resilient with the implementation of policies. We showcase results in the national case study of Greece. Parametric sensitivity analysis for socioecological systems is performed to identify which parameter the model is the most sensitive to. The case study is based on the structure of a system dynamics model that maps sector-specific data from major national and international databases while causal loop diagrams and stock-and-flow diagrams are presented. Through engineering and ecological resilience metrics, we quantify system resilience and identify which policy renders the system more resilient in terms of how much perturbation it can absorb and how fast it bounces back to its original state, if at all. Two policies are tested, and the framework is implemented to identify which policy is the most beneficial for the system in terms of resilience.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据