4.6 Article

Modeling Emulsification Influence on Oil Properties and Fate to Inform Effective Spill Response

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.908984

关键词

oil spill modeling; oil fate; water-in-oil emulsification; oil exposure; oil weathering; oil spill response; oil viscosity; oil fate and effects

向作者/读者索取更多资源

Water-in-oil emulsification affects the fate and exposure of spilled oil by increasing its viscosity. The increase in viscosity prolongs floating oil exposure and makes it more likely to come ashore. Emulsification also restricts entrainment and slows evaporation, while increasing dissolved concentrations in the water column.
Water-in-oil emulsification affects spilled oil fate and exposure, as well as the effectiveness of oil spill response options, via changes in oil viscosity. While oil weathering processes such as evaporation, dissolution, photo-oxidation, and biodegradation increase oil viscosity about 10-fold, incorporation of water droplets into floating oil can increase viscosity by another order of magnitude. The objective of this study was to evaluate how changes in viscosity by oil type, with weathering, and with emulsification affect oil fate. Oil spill modeling analyses demonstrated that the increase in viscosity from emulsification prolonged floating oil exposure by preventing the oil from dispersing into the water column. Persistent emulsified oils are more likely to come ashore than low viscosity oils that readily disperse. Through a rapid increase in viscosity, emulsification restricted entrainment and slowed evaporation. Water column exposure to dissolved concentrations increased with lower viscosity oils. Thus, the ability to emulsify, and at what weathered state, are important predictors of oil fate. Oil viscosity is an important consideration for choosing response alternatives as it controls effectiveness of mechanical removal, in-situ-burning and surface-active chemicals. Therefore, understanding and quantification of oil emulsification are research priorities. The most influential model input determining emulsification and the emulsion's viscosity is its maximum water content, as it controls the ultimate viscosity of the emulsion. Viscosities were also influenced by the volatile content and initial viscosity of the oil. Algorithms quantifying emulsion stability under field conditions have not been developed, so emulsions were assumed stable over the 30-day simulations. Changes in emulsion stability over time would affect oil properties and so floating oil and shoreline exposures, as well as response effectiveness. However, water column exposures to dissolved concentrations are determined within a few days of oil release, and as such would not be affected by differences in long-term stabilities of the emulsions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据