4.6 Article

Pathogenic Bacterial Communities of Dust in a Coal Mine

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.857744

关键词

coal mine; respirable dust; non-viral pathogens; PacBio; picrust2

资金

  1. key program of National Natural Science Foundation of China [51934007]
  2. major scientific and technological innovation projects in Shandong Province [2019JZZY020504]
  3. Independent Research Fund of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines in Anhui University of Science and Technology [SKLMRDPC20ZZ08]
  4. Institute of Energy, Hefei Comprehensive National Science Center [21KZS216]

向作者/读者索取更多资源

This study analyzed the bacterial communities in coal mine dust and found several pathogenic bacteria, suggesting the importance of considering non-viral pathogens in mine dust prevention and control.
Coal mine dust is an important factor leading to occupational diseases of mine workers, however, it remains poorly understood about the non-viral pathogens in coal mine dust. In this study, bacterial communities in total dust and respirable dust from different laneways in Hongliulin coal mine (Shaanxi, China) were analyzed by PacBio high-throughput sequencing. The results showed no significant differences in the number, diversity and structure of bacterial communities in different laneways. Gammaproteobacteria, Alphaproteobacteria and Betaproteobacteria were the numerically dominant groups in dust samples which accounted for 72.5% of the total sequences. Among them, a total of seven known bacterial pathogens species including Aeromonas hydrophila, Burkholderia cenocepacia, Klebsiella pneumoniae, Proteus vulgaris, Serratia marcescens, Staphylococcus epidermidis and Staphylococcus saccharolyticus and two bacterial genera (Actinomyces and Peptostreptococcus) with extensive pathogenicity were detected in the respirable dust samples. And linear discriminant analysis indicated that prominent pathogens were detected in the respirable dust for the return laneway and the digging tunnel, such as K. pneumoniae and S. saccharolyticus in return laneway and B. cenocepacia in the digging tunnel. In parallel, PICRUST2 was performed to predict the functions in dust, and the human diseases count accounted for 4.31% of the total predictive function. In addition, the predictive count of human diseases in the respirable dust was closely related to bacterial diversity and structure. In summary, this study complemented the information of pathogenic bacteria in dust, especially in respirable dust, and suggested that non-viral pathogens should be considered in the process of mine dust prevention and control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据