4.5 Article

Enhancing the Dye-Rejection Efficiencies and Stability of Graphene Oxide-Based Nanofiltration Membranes via Divalent Cation Intercalation and Mild Reduction

期刊

MEMBRANES
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/membranes12040402

关键词

divalent ion; graphene oxide; membrane; nanofiltration; reduction; crosslinking

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2020R1C1C101317212]

向作者/读者索取更多资源

In this study, the use of divalent cation crosslinking was attempted to improve the resistance against swelling in partially reduced GO membranes. It was found that the crosslinked membranes demonstrated improved dye rejection efficiency and mechanical stability.
Laminar graphene oxide (GO) membranes have demonstrated great potential as next-generation water-treatment membranes because of their outstanding performance and physicochemical properties. However, solute rejection and stability deterioration in aqueous solutions, which are caused by enlarged nanochannels due to hydration and swelling, are regarded as serious issues in the use of GO membranes. In this study, we attempt to use the crosslinking of divalent cations to improve resistance against swelling in partially reduced GO membranes. The partially reduced GO membranes intercalated by divalent cations (i.e., Mg2+) exhibited improved dye-rejection efficiencies of up to 98.40%, 98.88%, and 86.41% for methyl orange, methylene blue, and rhodamine B, respectively. In addition, it was confirmed that divalent cation crosslinking and partial reduction could strengthen mechanical stability during testing under harsh aqueous conditions (i.e., strong sonication).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据