4.5 Article

Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide

期刊

CHEMOSENSORS
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/chemosensors10050178

关键词

adsorption; dissociation reaction; density functional theory; alloy; NO

资金

  1. National Natural Science Foundation of China [61971251]
  2. China Postdoctoral Science Foundation [2019M663474]
  3. Natural Science Foundation of Zhejiang [LGG22F010017, LY18F010009]
  4. Natural Science Foundation of Ningbo [2018A610002]

向作者/读者索取更多资源

This study used density functional theory to analyze the effect of Au doping on the performance of nitrogen oxide sensors in automobiles. It was found that Au can effectively weaken the adsorption energy of NO on platinum surfaces, thereby inhibiting the dissociation of NO.
In order to gradually reduce automobile exhaust pollution and improve fuel quality, the NOx sensor, which can be monitored in real time in an automobile engine's electronic control system, has become an indispensable part of the automobile lean burn system. In these types of NOx sensors, Au-doped platinum electrodes have received great attention due to their selectivity towards NO. However, the reaction process of NO gas on the Au-doped platinum electrode in the sensor and the possible regulation mechanism is still unclear. In this paper, the density functional theory (DFT) was used to analyze the effect of Au-doped Pt electrodes on the performance of nitrogen oxide sensors in automobiles. Firstly, the adsorption energies of NO molecules on pure Pt and Au/Pt surfaces were compared. The adsorption and dissociation of NO on Pt substrates doped with Au monomers, dimers, and trimers were investigated. These results showed that Au can effectively weaken the adsorption energy of NO molecules on a Pt surface. It was noted that with the increase in the number of Au atoms on the surface of Pt(111), the adsorption capacity of NO molecules on the alloy surface becomes weaker. When observing the transition state of NO decomposition on three different alloy surfaces, the study showed that the activation energy and reaction heat of NO dissociation increased. It further showed that doping with Au increased the activation energy of NO decomposition, thereby effectively inhibiting the decomposition of NO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据