4.7 Article

Evaluation of Hydroxycarboxylic Acid Receptor 1 (HCAR1) as a Building Block for Genetically Encoded Extracellular Lactate Biosensors

期刊

BIOSENSORS-BASEL
卷 12, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/bios12030143

关键词

lactate; genetically encoded fluorescent indicator; GPR81; HCAR1; circularly permuted green fluorescent protein

资金

  1. University of Lausanne, Faculty of Biology and Medicine

向作者/读者索取更多资源

The status of lactate has evolved from being considered a waste product to a signaling molecule. Evaluation of lactate levels within tissues is crucial with high spatial and temporal resolution. HCAR1 shows promise as a building block for a lactate biosensor, but is sensitive to structural perturbations.
The status of lactate has evolved from being considered a waste product of cellular metabolism to a useful metabolic substrate and, more recently, to a signaling molecule. The fluctuations of lactate levels within biological tissues, in particular in the interstitial space, are crucial to assess with high spatial and temporal resolution, and this is best achieved using cellular imaging approaches. In this study, we evaluated the suitability of the lactate receptor, hydroxycarboxylic acid receptor 1 (HCAR1, formerly named GPR81), as a basis for the development of a genetically encoded fluorescent lactate biosensor. We used a biosensor strategy that was successfully applied to molecules such as dopamine, serotonin, and norepinephrine, based on their respective G-protein-coupled receptors. In this study, a set of intensiometric sensors was constructed and expressed in living cells. They showed selective expression at the plasma membrane and responded to physiological concentrations of lactate. However, these sensors lost the original ability of HCAR1 to selectively respond to lactate versus other related small carboxylic acid molecules. Therefore, while representing a promising building block for a lactate biosensor, HCAR1 was found to be sensitive to perturbations of its structure, affecting its ability to distinguish between related carboxylic molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据