4.6 Article

The Adaptive Renal Response for Volume Homeostasis During 2 Weeks of Dapagliflozin Treatment in People With Type 2 Diabetes and Preserved Renal Function on a Sodium-Controlled Diet

期刊

KIDNEY INTERNATIONAL REPORTS
卷 7, 期 7, 页码 1084-1092

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ekir.2022.02.023

关键词

body fluid homeostasis; renal adaptive mechanisms; SGLT2 inhibitors; type 2 diabetes; water conservation

向作者/读者索取更多资源

This study found that dapagliflozin, an SGLT2 inhibitor, can maintain sodium balance and prevent excessive fluid loss by increasing sodium uptake in the distal tubules, decreasing fractional urea excretion, and reducing free water clearance.
Introduction: Proximal tubule sodium uptake is diminished following sodium glucose cotransporter 2 (SGLT2) inhibition. We previously showed that during SGLT2 inhibition, the kidneys adapt by increasing sodium uptake at distal tubular segments, thereby maintaining body sodium balance. Despite continuous glycosuria, we detected no increased urinevolumes. We therefore assessed the adaptive renal responses to prevent excessive fluid loss. Methods: We conducted a mechanistic open-label study in people with type 2 diabetes mellitus with preserved kidney function, who received a standardized sodium intake (150 mmol/d) to evaluate the effects of dapagliflozin on renin-angiotensin-aldosterone system (RAAS) hormones, volume-related biomarkers, urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR), at start of treatment (day 4), end of treatment (day 14), and follow-up (day 18). Results: A total of 14 people were enrolled. Plasma renin and angiotensin II and urinary aldosterone and angiotensinogen were acutely and persistently increased during treatment with dapagliflozin. Plasma copeptin level was numerically increased after 4 days (21%). Similarly, fractional urea excretion was significantly decreased at start of treatment (-17%). Free water clearance was significantly decreased after 4 days (-74%) and 14 days (-41%). All changes reversed after dapagliflozin discontinuation. Conclusion: Dapagliflozin-induced osmotic diuresis triggers kidney adaptive mechanisms to maintain volume and sodium balance in people with type 2 diabetes and preserved kidney function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据