4.6 Article

Data-Driven Modelling and Control for Robot Needle Insertion in Deep Anterior Lamellar Keratoplasty

期刊

IEEE ROBOTICS AND AUTOMATION LETTERS
卷 7, 期 2, 页码 1526-1533

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2022.3140458

关键词

Medical robots and systems; surgical robotics: planning; model learning for control

类别

资金

  1. NIH [R21-EY029877]

向作者/读者索取更多资源

Deep anterior lamellar keratoplasty (DALK) is a technique for cornea transplantation that reduces patient morbidity. Robot microsurgery has been explored as a potential application for DALK due to its challenging nature for human surgeons. In this study, we have developed a data-driven autoregressive dynamic model and a model predictive controller to improve the accuracy of needle insertion during the surgery. Our experiments show that our controller significantly improves needle positioning accuracy compared to previous methods.
Deep anterior lamellar keratoplasty (DALK) is a technique for cornea transplantation which is associated with reduced patient morbidity. DALK has been explored as a potential application of robot microsurgery because the small scales, fine control requirements, and difficulty of visualization make it very challenging for human surgeons to perform. We address the problem of modelling the small scale interactions between the surgical tool and the cornea tissue to improve the accuracy of needle insertion, since accurate placement within 5% of target depth has been associated with more reliable clinical outcomes. We develop a data-driven autoregressive dynamic model of the tool-tissue interaction and a model predictive controller to guide robot needle insertion. In an ex vivo model, our controller significantly improves the accuracy of needle positioning by more than 40% compared to prior methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据