4.7 Article

Hierarchical nanospheres of Fe2O3-Fe2N anchored on reduced graphene oxide as a high-performance anode for lithium-ion batteries

期刊

SURFACES AND INTERFACES
卷 30, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2022.101959

关键词

Partial nitridation; Anode material; Lithium-ion battery; rGO

资金

  1. King Khalid University [RCAMS/KKU/008/21]

向作者/读者索取更多资源

In this study, a hierarchically nanostructured lithium-ion storage anode material was developed by partial nitridation of Fe2O3 nanospheres anchored on reduced graphene oxide sheets. The incorporation of electron-rich N-moiety and the graphene network contribute to the superior cycling stability and rate performance of the material.
The development of cost-effective and promising anode material is an ever-growing demand of the energy storage research community. Here we report a hierarchically nanostructured lithium-ion storage anode developed by partial nitridation of Fe2O3 nanospheres anchored on reduced graphene oxide sheets (Fe2O3-Fe2N/rGO). The incorporation of electron-rich N-moiety profoundly stabilizes Fe2O3 during the delithiation process. The graphene network not only serves as a nucleation substrate for suppressing agglomeration of Fe2O3-Fe2N but also provides a large surface area, high electrical conductivity, faster ionic diffusion kinetics and maintains structural integrity while absorbing high strain. The structure, morphology and composition analysis validated the successful development of the targeted material. The enhanced structural attributes ensure the effectiveness of Fe2O3-Fe2N/rGO as high-performance anode material with an initial discharge capacity of 1565 mAh g-1 at 50 mA g-1 and capacity retention of 759 mAh g-1 after 500 cycles reflecting superior cycling stability and rate performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据