4.6 Article

Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032

期刊

BIOLOGY-BASEL
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/biology11060846

关键词

gamma-aminobutyric acid; butyrolactam; genome-scale metabolic model; metabolic rewiring; Corynebacterium glutamicum

类别

资金

  1. National Key R&D Program of China [2021YFC2101800]
  2. National Natural Science Foundation of China [32071460]
  3. Innovation Academy for Green Manufacture, Chinese Academy of Sciences [IAGM-2019-A02]

向作者/读者索取更多资源

This study successfully engineered Corynebacterium glutamicum ATCC13032 for the fermentation production of GABA and butyrolactam from glucose. The metabolic engineering strategies, including the construction of biosynthetic pathways and genetic modifications, effectively increased the production of GABA and butyrolactam. This research provides new insights into utilizing industrial microorganisms to produce target chemicals from renewable carbon sources.
Simple Summary The fermentative production of desired chemicals from renewable resources is one of the promising biosynthetic routes to replace the petrochemical-based process. Gamma-aminobutyric acid (GABA) can be synthesized from l-glutamic acid and used as a building block for the synthesis of butyrolactam and polyamide 4 (nylon 4). The genome-scale metabolic model can predict the growth ability and metabolic flux distribution by genetic disturbances, which provides a strategy to construct a microbial cell factory for GABA and butyrolactam biosynthesis. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum ATCC13032 for GABA and butyrolactam fermentation from glucose. The biosynthetic pathways of GABA and butyrolactam were constructed by overexpressing the heterologous genes using a bi-cistronic expression cassette. The genetic modifications of the metabolic network cooperatively forced the carbon flux toward GABA and butyrolactam synthesis. This study provides new insights into engineering industrial microorganisms to produce target chemicals from renewable carbon sources. Gamma-aminobutyric acid (GABA) can be used as a bioactive component in the pharmaceutical industry and a precursor for the synthesis of butyrolactam, which functions as a monomer for the synthesis of polyamide 4 (nylon 4) with improved thermal stability and high biodegradability. The bio-based fermentation production of chemicals using microbes as a cell factory provides an alternative to replace petrochemical-based processes. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum for GABA and butyrolactam fermentation. A GABA biosynthetic pathway was constructed using a bi-cistronic expression cassette containing mutant glutamate decarboxylase. An in silico simulation showed that the increase in the flux from acetyl-CoA to alpha-ketoglutarate and the decrease in the flux from alpha-ketoglutarate to succinate drove more flux toward GABA biosynthesis. The TCA cycle was reconstructed by increasing the expression of acn and icd genes and deleting the sucCD gene. Blocking GABA catabolism and rewiring the transport system of GABA further improved GABA production. An acetyl-CoA-dependent pathway for in vivo butyrolactam biosynthesis was constructed by overexpressing act-encoding ss-alanine CoA transferase. In fed-batch fermentation, the engineered strains produced 23.07 g/L of GABA with a yield of 0.52 mol/mol from glucose and 4.58 g/L of butyrolactam. The metabolic engineering strategies can be used for genetic modification of industrial strains to produce target chemicals from alpha-ketoglutarate as a precursor, and the engineered strains will be useful to synthesize the bio-based monomer of polyamide 4 from renewable resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据